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Summary 

The relationships among the retention time, elution curve shape, and the 
zeroth and first partial normal moments are evaluated under conditions 
in which slight, moderate, or severe lateral mass transfer control exists. 
The elution curve and its moments are characterized by a single dimen- 
sionless group, @, which is a measure of the rate of diffusional mass 
transfer into the stationary phase relative to the rate of mobile-phase 
convective mass transfer in the axial direction. Closed form solutions 
are given for a discrete description (a one-term approximation to the 
distributed description) of the stationary liquid phase. The dimension- 
less retention time is derived as a function of @ and the results compared 
to recently published experimental observations. The first normal 
moment is not invariant with respect to lateral kinetic phenomena when 
proper account is taken of the experimental restriction of a finite cutoff 
time. 

INTRODUCTION 

In a previous paper (I), we have derived and discussed the proper- 
ties of the column characteristic, &, an important transform quantity 
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384 P. R. RONY AND J. E. FUNK 

that contains all of the dynamic information of interest in elution 
chromatography. Such information may be extracted from by taking 
successively higher normal moments. For example, the first normal 
moment, p i ,  for an impulse input can be calculated from (I), 

z €2  z 
p i  = - + - - limit 

v1 El211 p-0 

where z is set at  L,  the column length; v l  is the velocity of the mobile 
phase; and LJE, is the ratio of the volume fractions of the stationary 
and mobile phases. 

Certain problems exist in the interpretation of the normal moments, 
however, particularly when severe mobile-phase mass transfer control 
or stationary-phase diffusion control exists ( 2 ) .  For these conditions 
it is no longer possible to experimentally “integrate” to  infinite time, 
as required by the formula for the mth normal moment, 

/o tmcel d t  

kw cil dt 

I 
Prn = (2) 

As a consequence, the elution time of the chromatographic peak is 
no longer dictated by the equilibrium distribution coefficient. Little 
and Pauplis ( S ) ,  Oberholtzer and Rogers ( 4 ) ,  Kelley and Billmeyer 
( 5 ) ,  and Habgood and MacDonald (6) have recently described situa- 
tions in which this type of phenomenon may exist. 

It is the purpose of this paper to  present numerical and analytical 
solutions to the conservation-of-mass equations characterizing a 
simple chromatographic system. The derivation of the general equa- 
tions, such as Eqs. (1) or (3),  has been presented in detail elsewhere 
(1). A significant result of our calculations is the fact that the shape 
of the elution curve is completely described by a single dimensionless 
group, 9, which is a measure of the rate of diffusion mass transfer 
into the stationary phase relative to the convective mobile-phase mass 
transfer in the axial direction. Although presented for a simple capil- 
lary column, the theoretical results can be extended to  other situations 
if C$ is properly interpreted. 

IMPULSE RESPONSE 

We have previously shown (1) that  the elution output from a 
chromatographic column for a unit impulse input is given by 
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RETENTION TIME. II 385 

where &, the column characteristic, is 

ti, is the Laplace transform of the concentration of component i in 
the mobile phase, and t,? and ti3 are the Laplace transforms of the 
free and complexed component in the stationary phase. The subscript, 
Av, represents a lateral spatial average of the indicated quantities. 
The exponential parameter, y ,  employed by Schneider and Smith (7) 
is closely related to G. 

For the simple capillary column shown in Fig. 1, the column 
characteristic is (1)  

Capillary Column 

FIG. 1 .  Capillary chromatographic system. 
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386 P. R .  RONY AND J. E. FUNK 

A tanh qa 
G = K;2  ~ Distributed liquid film 

qa 
( 5 )  

Di2 

3 u2 
_ _  

4 

(6) G = K i 2  Discrete approximation 
S Di2 

P + 3 2  

where 

Evaluation of the inverse transform given by Eq. (3) will furnish 
the elution curve which, with the aid of the convolution integral for 
Laplace transforms, can be used to determine the response to any 
type of column input. 

The equations can be nondimensionalized by introducing the fol- 
lowing variables 

The characteristic time, t,, is that  contribution to  the first normal 
moment made by the mass transfer process, and the parameter 9 is 
a measure of the rate of diffusional mass transfer into the liquid film 
relative to  the rate of mass transfer by convection in the axial 
direction. 

With these changes of variables, the impulse response becomes 

for the distributed liquid film and 
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RETENTION TIME. I I  387 

for the discrete liquid film. The dimensionless elution curves given 
by Eqs. (12) and (13) are completely determined by the parameter $. 

SOLUTION FOR DISTRIBUTED LIQUID F l l M  

We were unable to obtain a closed form solution of the inversion 
indicated in Eq. (12). A numerical inversion was obtained, however, 
and is shown in Figs. 2 and 3 for two different values of 9. The solid 

.8 I I I 1 I 1 I I 

- 

- 

-.* - 

0 1 1 1 I I 1 I I 
0 .2 4 .6 .8 1.0 1.2 I.4 1.6 IS 

I 

FIG. 2. Solutions t o  Eq. (12) [solid linel and Eq. (13) [dashed linel for 
I$ = 4.75. 

lines give the numerical results for the distributed liquid film model, 
whereas the dashed lines are analytical solutions for a discrete descrip- 
tion of the liquid film that will be discussed in the following section. 

Wing’s method for the inversion of Laplace transforms ( 8 )  was 
employed. We encountered problems in the a priori selection of certain 
of the parameters required for the numerical inversion. For this and 
other reasons that will become evident later, the analytical solution 
was preferred even though it was only an approximation to the true 
solution. 

SOLUTION FOR DISCRETE LIQUID F l l M  

We have previously shown that the discrete description of the 
liquid film-a variation of the lumping procedure originally described 
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388 P. R. RONY AND 1. E. FUNK 

FIG. 3. Solutions to Eq. (12) [solid linel and Eq. (13) [dashed linel for 
cp = 475. 

by Funk and Houghtdn (9)-is, in a sense, a one-term approximation 
to the distributed model, and have suggested a procedure for the 
determination of + via a single-stage experiment (I). By means of 
the substitution theorem for Laplace transforms, Eq. (13) becomes 

The inverse transform of Eq. (14) is given in the Bateman tables 
(10) , 

Therefore, the final desired solution is 

where ( t ~ )  is a unit impulse a t  T = 0 and I ,  is the modified Bessel 
function of order unity. 

Equation (16) is shown as the dashed line in Figs. 2 and 3. The 
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RETENTION TIME. II 389 

information contained in the elution curves is more easily and accu- 
rately obtained from Eq. (16) than from the numerical inversion. 
The ease in handling and the flexibility of a closed form solution is 
clearly preferable to the numerical inversion results. 

The first term in the brackets in Eq. (16) represents an impulse 
a t  T = 0, corresponding to the column transport time of L/v,. The 
integrated area of this impulse is e-+, which is the fraction of the 
component that has passed through the chromatographic column 
without permeating the stationary phase. This fraction has a value 
of unity when + = 0 and a value of zero when + + cn. The second 
part of the elution curve described by Eq. (16) is a skew Gaussian or 
a decaying exponential for all T > 0 and + # 0. 

Elution curve profiles, corresponding to Eq. (16) ,  for various values 
of + are given elsewhere (2).  For C#I = 0, the response to a unit impulse 
is likewise a unit impulse a t  T = 0. As the value of + is increased, 
the magnitude of the impulse a t  T = 0 decreases and, for + > 2, a 
peak maximum develops. As + is increased beyond 2, the peak maxi- 
mum moves toward T = 1 and the elution curve sharpens. The elution 
curve approaches a unit impulse a t  T = 1 when C#I becomes very large. 
The over-all type of behavior is shown schematically in Fig. 4. 

-Impulse 
for + = O  

I 
"I 

mpulse 
or +-a 

7 

FIG. 4. Schematic behavior of elut,ion curves as a function of +. K , ,  is a 
gasliquid distribution coefficient (2). 
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390 P. R. RONY AND J. E. FUNK 

PARTIAL NORMAL MOMENTS 

We have previously defined the partial normal statistical moment, 
Pm, as ( 2 )  

For the system described in this paper, pm becomes 

where T~ is a dimensionless cutoff time, 

L t ,  - - 
- 01 

to 
Tc  = - 

From Eq. (16)' we first obtain 

and 

for the zeroth and first partial normal moment, respectively. With 
the aid of Eq. 813.3 in Dwight's tables (11) 

m 

and the following gamma function definitions, 

r(n + 1 , ~ ~ )  = A'' une-v dv 

r(n + 2,v,) = kwc un+le--u du 

(23) 

(24) 

where 

v = Q r  
vc = Q r c  
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RETENTION TIME. II 391 

Eqs. (19) and (20) become 

Equations 
Eq. (28) are 

(16) ,  (27), and the quantity, {[it - (L/v,)  , i o ] / t o } ,  in 
shown as a function of T in Figs. 5 through 7. As -j 0, 

Dimenaionksa Time, r 

FIG. 5. Plot of Eq. (16) [Curve A], Eq. (27) [Curve B1, and the quan- 
tity [ p a  - (L /v , )P~ l t ,  [Curve C1 as a function of 7 for @ = 0.5. 

p l ,  approaches a step change a t  T = 0 and both tOc i l (L ,~ )  and { [ p l  - 
( L / v ,  1 p o l  / t o }  approach zero. As 4 + 00 ,  tocil (L,T) approaches a unit 
impulse a t  T = 1 and both po and { [bl - (L /v l )po] / t , }  approach 
a step change a t  T = 1. For large values of 4, the value of the first 
iiorrnal statistical moment and the retention time (location of peak 
maximum) become identical. For small values of 4 and a finite cutoff 
time, t , ,  the relationship among the retention time and the moments 
must be evaluated carefully. Other consequences of these results are 
presented in detail elsewhere (2).  
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392 P. R. R O N Y  AND J. E. F U N K  

Dimnuonloss Time, r 

FIG. 6. Plot of Eq. (16) [Curve A], Eq. (27) [Curve B1, and the quan- 
tity [El - ( L / v l ) p O l / t o  [Curve C1 as a function of T for + = 1.0. 

Dimorionloss Time. r 

FIG. 7 .  Plot of Eq. (16) [Curve A], Eq. (27) [Curve B1, and the quan- 
tity [p,- ( L / ~ ~ ) ~ ~ l / t ~  [Curve C1 as a function of T for 9 1 2 0 .  
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RETENTION TIME. I1 393 

NORMAL MOMENTS 

The normal moments, p;, can be calculated from the partial normal 
moments, h, by taking the following limit, 

pk = limit pm 
tc+ LI) 

By the application of the following relationships, 

limit ~ ( n  + 1 , ~ ~ )  = n! 
YC" m 

limit ~ ( n  + 2 , ~ ~ )  = (n + l)! 
"C-i m 

n =O 

2 f i -  - e + - l  
71 =o 

Equations (27) and (28) reduce to  

limit po = 1 
TC+ - 

(33) 

(34) 

We have thus shown that correct results are obtained for the 
zeroth and first normal moments when T ~ +  to. We further observe 
that the integral summations in Eqs. (27) and (28) are the con- 
tributions to  the zeroth and first moments from the mass transfer 
process. 

RETENTION TIME 

The retention time, T ~ ,  is that  value of T for which the elution 
curve of Eq. (16) is a maximum (or that  value for which the first 
derivative with respect to T is zero). This time can be obtained 
as a function of + by solving the following equation, 

Use of the small-value approximation to the Bessel functions, in  
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394 P. R. RONY AND J. E. FUNK 

which the first two terms of the approximation are included, simplifies 
Eq. (36) to  

(small 4) (37) 

Equation (37) clearly indicates that  no peak in the elution curve 
will develop for values of + less than 2. The development of the peak 
as + is increased beyond 2 is shown in Fig. 8. 

I I I 1 I I 
0 0.2 04 06  08 10 12 

Dimensionless Time, T 

FIG. 8. Plot of Eq. (16) as a function of 7 for values of @ near 2.0. 

In  Fig. 9, the dimensionless retention time, TR, is plotted versus 
the inverse of +. As indicated by Eqs. (9) through (ll),  TR may be 
interpreted as a dimensionless retention (or elution) volume and +-' 
as a dimensionless flow rate. This can most clearly be seen if we 
recast Eqs. (9) and (11) into the following forms, 

- Q - TR'v~ 

Z?raRLK,s 3 7 '  Diz ~ I ~ ~ R L K , ~  = S DtZ  
3 a2 

where Ti, is the retention volume, V ,  is the column void volume, and 
Q is the volumetric gas flow rate (units of cm3/sec). Thus, as the 
velocity u1 increases, +-l increases and T~ decreases, a conclusion that 
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RETENTION TIME. II 395 

4-' 
FIG. 9. Solution of Eq. (36). 

has experimental support in the data of Oberholtzer and Rogers ( 4 )  
and Little and Pauplis ( 3 ) .  Further, a longer column or a lower flow 
rate decreases +-l and thereby enhances the development of a peak. 
These effects on peak development have been discussed by Habgood 
and MacDonald ( 6 ) ,  who arrived a t  their conclusions in a different 
manner. 

For large values of +, the dimensionless retention time can be 
obtained from the large value approximation to Eq. (16) 

The impulse a t  T = 0 has been neglected since its magnitude is neg- 
ligible for large +. Equation (38) is shown as the dashed line in Fig. 
3;  the approximation to Eq. (16) is quite good for large values of +. 
The value of the peak height is given by the equation, 

The value of rR from Eq. (38) is 

which, in tcrrns of V R ,  Vc ,  and Q, can be recast as 
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396 P. R. RONY AND J. E. FUNK 

Equation (41) describes the results given in Figs. (3) and (4) in 
the paper by Oberholtzer and Rogers ( 4 )  and indicates that a straight 
line with a negative slope is to be expected. 

By making suitable approximations and using Eq. (381, it can be 
shown that 

and 

2a 
2L 1 a2 R - K i z  

2 (large 4) (43) = $vl- HETP = - 

' (1 + Fy Di2 (1 + 2 K i 2 )  

where NTP and HETP are the number of theoretical plates and 
height equivalent of a theoretical plate, respectively. The similarity 
between these equations and previous ones, such as that of Giddings 
( l a ) ,  is noted. Details of the derivations are available upon request 
to the authors. 

MOBILE PHASE RESISTANCE TO MASS TRANSFER 

The effect of resistance to mass transfer in the mobile phase may 
also be incorporated into the above solutions by noting that 

If I c f  is the mass transfer coefficient (units of cm,/sec), the flux- 
matching condition a t  the stationary-mobile phase interface is 

(45) aci2 
ICs(~il - cX) = D .  - 

12 a~ I u-a 
where cil - c: is the concentration drop across a very thin film near 
the surface of the stationary phase. The resulting expressions for G are 

Distributed (46) 
A tanh qa 1 G = K i 2  ___ . 

qa 1 + 2 qa tanh qa N u  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
3
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



RETENTION TIME. II 397 

8 D , z  1 
3 a2 8 K 2 2  

8D,2 1 
P + 3 2  1 + - - -  8 K12 

3 Nu 

_ _  

1 l+$NU 
Discrete approximation (47) G = K t 2  

where Nu = Icfa/D,, is a Nusselt number for mass transfer. 
Equation (46) indicates that a substantially different function of 

p must be inverted to obtain the elution curve when a distributed 
representation of the liquid film is employed. On the other hand, 
Eq. (47) states that  the parameter C$ must simply be corrected by 
the factor 1/[1 + (8/3) ( K ~ , , ” U ) ]  when the discrete description is 
used. As k,  += 00, this factor approaches unity and as Icf + 0, it 
approaches zero. The curves shown in Figs. 3 and 4 in Ref. 2 there- 
fore incorporate the effect of mobile-phase resistance to mass transfer, 
provided that this effect is included in the calculation of C$. 

CONCLUSIONS 

We have shown that the elution curve shape and its moments are 
characterized, a t  least for linear chromatography, by a single dimen- 
sionless group, 9, which is a measure of the rate of mass transfer 
into the stationary phase by diffusion relative to the rate of mass 
transfer in the axial direction by convection. Both a distributed and 
a lumped description of the liquid film are presented; a numerical 
inversion of the distributed description is shown. The lumped, or 
discrete, description for the liquid film is, in a sense, a one-term 
approximation to the distributed representation ; closed form solutions 
are given for the elution curve and the zeroth and first partial normal 
moments. The dimensionless retention time, T ~ ,  is shown as a function 
of 4 and the results compared to the recently published experimental 
observations of other investigators. The effect of a stationary-phase 
resistance to mass transfer is also considered. 

The relationship among the retention time, elution curve, and the 
zeroth and first partial normal moments can be evaluated quantita- 
tively by means of the equations presented in this paper, even under 
conditions in which severe lateral mass transfer control exists. Further- 
more, the results show that the first normal moment is not invariant 
with respect to lateral kinetic phenomena when proper account is 
taken of the experimental restriction of a finite cutoff time. 
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a 
A ,  

C 

c^ 

c* 
c^* 
D 
6 
kf 
K 
L 
n 

Nu 
P 
P 
Q 
R 

t 
t o  

2 l A v  

2, 

2.'1 

v c  
VR 

2 

Greek letters 

Y 
t 

K 
I 

Clm 

riim 

4 
7 

Subscripts 

C 

thickness of liquid film (cm) 
lateral cross-sectional area (cm2) 
concentration (moles/cm3) 
Laplace transform of concentration 
1,aplace transform of average concentration 
interfacial concentration (nioles/cm3) 
Laplace transform of interfacial concentration 
diffusion coefficient (cm2/sec) 
colunin characteristic 
mass-transfer coefficient (cm/sec) 
distribution coefficient (moles/moles) 
column length (cm) 
series variable 
Nusselt number 
1,apIace transform variable 
defined by Eq. (7) 
volumetric flow rate (cm3/sec) 
column radius to surface of stationary phase (cm) 
time (sec) 
defined by Eq. (10) (sec) 
defined by Eq. (23)  
velocity of mobile phase (cm/sec) 
column void volume ( c d )  
retention volume (cm3) 
axial Cartesian coordinate (cm) 

gamma function 
volume fraction (cm3/cm3) 
partition coefficient (moles/cm3 : moles/cm3) 
mth normal statistical moment (seem) 
mth partial normal statistical moment (secm) 
defined by Eq. (9) 
defined by Eq. (11) 

cutpoirit 
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i component i 
is 
m 
R retention value 
s environment s 

1, 2 specific phases 

component i in environment s (i.e., partition state 
power in computation of moments 

i:s ) 

il, i2, i3 specific partition states 
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